

ТРАНСЛЯЦИЯ

После транскрипции и переноса генетической информации с ядерной ДНК в цитоплазму, нуклеотидная последовательность мРНК переводится в специфическую последовательность аминокислот белка. Процесс называется *трансляцией*, поскольку "язык" нуклеотидов переводится в "язык" 20 аминокислот, которые составляют белки. Полипептидные цепи синтезируются путем точного расположения аминокислот в определенном порядке согласно *генетическому коду*: системой соответствия между последовательностью трех нуклеотидов (*кодонов*) мРНК и каждой из 20-и аминокислот.

В процессе транскрипции мРНК получает от молекулы ДНК генетическую информацию о последовательности аминокислот в полипептидной цепи. Система записи генетической информации, согласно которой последовательность нуклеотидов в молекуле ДНК (или РНК) определяет последовательность аминокислот в белке, носит название генетического кода.

Свойства генетического кода

- ✓ <u>Состоит из триплетов</u>, каждый триплет является *кодоном*. Существуют 64 кодона, из которых 61 кодирует определенные аминокислоты, а 3 являются СТОП-кодонами или нонсенс-кодонами.
- ✓ <u>Универсальность</u> генетического кода. У всех организмов один и тот же кодон кодирует одну и ту же аминокисло-

ту. Существуют исключения у некоторых прокариот, простейших и в митохондриях.

	U	C	A	G	
U	(Phe)	(Ser)	(Tyr)	(Cys)	U
	(Phe)	(Ser)	(Tyr)	(Cys)	C
	(Leu)	(Ser)	STOP	STOP	A
	(Leu)	(Ser)	STOP	(Trp)	G
С	(Leu)	(Pro)	(His)	(Arg)	U
	(Leu)	(Pro)	(His)	(Arg)	C
	(Leu)	(Pro)	(Gln)	(Arg)	A
	(Leu)	(Pro)	(Gln)	(Arg)	G
A	(Ile)	(Thr)	(Asn)	(Ser)	U
	(Ile)	(Thr)	(Asn)	(Ser)	C
	(Ile)	(Thr)	(Lys)	(Arg)	A
	(Met)	(Thr)	(Lys)	(Arg)	G
G	(Val)	(Ala)	(Asp)	(Gly)	U
	(Val)	(Ala)	(Asp)	(Gly)	C
	(Val)	(Ala)	(Glu)	(Gly)	A
	(Val)	(Ala)	(Glu)	(Gly)	G

- ✓ <u>Каждый кодон кодирует одну аминокислоту</u>. Исключение составляют кодоны AUG, который кодирует метионин и формилметионин, а также GUG, кодирующий валин и формилметионин.
- ✓ <u>Вырожденность</u> генетического кода. Одна и та же аминокислота может кодироваться несколькими триплетами (триплеты-синонимы). Таким образом, серину соответствуют 6 кодонов, пролину 4 и т.д.;
- ✓ <u>Коллинеарность</u> последовательность триплетов в молекуле РНК коррелирует с последовательностью аминокислот в полипептидной цепи;
- ✓ <u>Неперекрываемость</u> соседние триплеты не содержат общих нуклеотидов (Рис. 10.1).
- ✓ <u>Без знаков препинания</u> кодоны следуют один за другим без промежутков между ними.

- ✓ <u>Существует универсальный триплет инициации **AUG**; у прокариот и некоторых растений кодоном инициации может быть **GUG**;</u>
- ✓ <u>Существует 3 СТОП-кодона</u>: UAA, UAG, UGA;

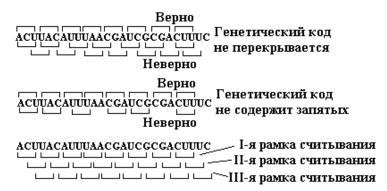


Рис. 10.1. Свойства генетического кода

Порядок расположения кодонов в молекуле РНК называется *рамкой считывания*. В каждой молекуле мРНК существуют 3 рамки считывания (рис.10.1). Рамка считывания, которая начинается с триплета AUG, носит название *открытой рамки считывания*.

Процесс расшифровки информации, закодированной в молекуле мРНК, реализуется на рибосомах с помощью тРНК. Аппарат трансляции включает многочисленные белковые факторы, которые катализируют точный перевод генетического кода, полимеризацию аминокислот, образование комплекса рибосом, осуществляют контроль скорости и числа копий молекул полипептидов, синтезируемых с одной и той же мРНК.

Процесс трансляции идентичен у прокариот и у эукариот, однако у них существуют различные белковые факторы трансляции, типы рибосом и тип инициации трансляции. Также различаются по структуре молекулы мРНК. У прокариот мРНК обычно имеет полицистронную структуру

- содержит информацию о синтезе нескольких белков, а у эукариот – содержит информацию о синтезе одного белка. У прокариот процессы транскрипции и трансляции могут протекать одновременно. Это становится возможным в связи с тем, что оба процесса протекают в цитоплазме, а скорость синтеза белков (10 а.к./сек) сравнима со скоростью синтеза РНК (30 оснований в секунду). У эукариот эти процессы протекают отдельно друг от друга: транскрипция – в ядре, трансляция – в цитоплазме. В митохондриях и пластидах все этапы реализации генетической информации происходят в соответствующих органеллах.

Аппарат трансляции

Аппарат синтеза белка состоит из следующих компонентов:

- мРНК матрица для синтеза полипептида;
- рибосомы место сборки полипептида;
- тРНК переводчик генетического кода с молекулы мРНК;
- аминоацил-тРНК-синтетазы адапторы для аминокислот к соответствующей тРНК;
- аминокислоты мономеры белка;
- ATP и GTP источники энергии;
- Mg²⁺, Ca ²⁺ кофакторы ферментов;
- белковые факторы, катализаторы трансляции- специфические регуляторы дешифровки генетического кода и синтеза белка.

мРНК эукариот является моноцистронной, содержит генетическую информацию для синтеза одной белковой молекулы. Ее синтез и процессинг происходит в ядре, затем транспортируется в цитоплазму (мРНК ассоциирует со специфическими белками, которые взаимодействуют с поровыми комплексами ядра). 5'-конец мРНК защищен кэпом, который служит так же сигналом для узнавания рибосом в

момент инициации трансляции. Вслед за кэпом расположены несколько десятков нетранслируемых нуклеотидов - *ли-дирующая последовательность*, которая представляет собой сайт связывания мРНК с рибосомой (рис.10.2). Транслируемая область содержит последовательность оснований, которая определяет порядок расположения аминокислот в полипептиде. На 5'-конце транслируемой последовательности содержится кодон инициации AUG. Сигналом терминации синтеза служит один из трех стоп-кодонов. На 3'-конце мРНК находится область, состоящая из 100-200 нетранслируемых нуклеотидов - poly(A)-"хвост".

Рис. 10.2. Строение мРНК у эукариот

мРНК у прокариот обычно полицистронна, т.е. кодирует многие белки, синтезируемые на одной и той же молекуле мРНК. Каждая молекула мРНК является продуктом транскрипции одного оперона. В отличие от мРНК эукариот, у бактериальных матриц отсутствуют КЭП и роlу(А)-"хвост". Лидирующая последовательность образуется примерно из 10 нетранслируемых нуклеотидов и содержит специфические консервативные последовательности, состоящие из 6 нуклеотидов (5'...AGGAGG... 3' - последовательность является комплементарной участку 3'-конца рРНК 16S. Одна и та же молекула мРНК может содержать несколько инициирующих кодонов AUG (реже GUG или UUG).

тРНК. В процессе белкового синтеза участвуют 20 аминокислот. Они транспортируются к месту синтеза с помощью молекул тРНК. Таким образом, тРНК служит адаптором (переводчиком), переводящим нуклеотидные последовательности мРНК в аминокислотные последовательности полипептида. Каждая молекула тРНК состоит из 70-80 нуклеотидов, которые образуют вторичную структуру в форме клеверного листа (рис.10.3). Молекула тРНК содержит кроме четырех обычных азотистых оснований (A, U, C, G) и несколько модифицированных: псевдоурацил (Ф), дигидроуридин (D), тимин (T) и др. тРНК содержит несколько функциональных областей:

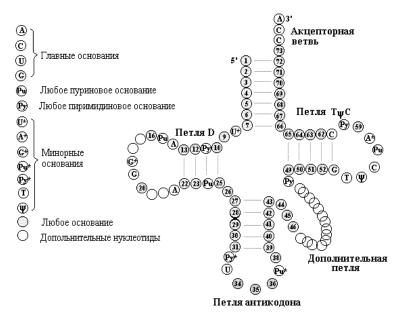


Рис. 10.3. Строение молекулы тРНК

- **акцепторная область**, к которой присоединяется аминокислота;

- петля Ψ, которая обеспечивает узнавание рибосомы;
- **петля D**, которая представляет собой центр узнавания аминоацил-тРНК-синтетазой;
- **антикодоновая петля**, которая содержит триплет, определяющая тип аминокислоты, которая будет транспортироваться. Антикодон имеет свойство комплементарно спариваться с кодоном мРНК.

Существуют в общем 61 тип тРНК, в соответствии с числом кодирующих триплетов.

Аминоацил – тРНК- синтетаза. Точный отбор и ковалентное присоединение аминокислоты к тРНК реализуется с участием фермента аминоацил-тРНК-синтетазы. Для каждой аминокислоты имеется своя особая синтетаза (всего таких синтетаз 20) (рис.10.4). Аминокислота связывается с группой ОН в положении С2' или С3' 3'-конца молекулы тРНК. Реакция присоединения протекает в два этапа:

1) фермент + аминокислота + ATP $\xrightarrow{Mg^{2+}}$ фермент– (аминоацил–AM Φ) + P \sim P;

2)фермент–(аминоацил–АМФ) + тРНК \rightarrow аминоацил–тРНК + АМФ + фермент.

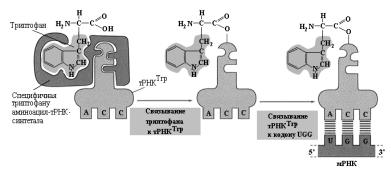


Рис. 10.4. Механизм взаимодействия аминокислоты, тРНК и тРНК-синтетазы

Рибосомы. Рибосомы представляют собой фабрики белкового синтеза. На рибосомах происходит перевод информации мРНК и полимеризация аминокислот. Рибосомы – это крупные комплексы, состоящие из белков и рРНК. Рибосомы эукариот и прокариот очень сходны по своей структуре и функциям (рис.10.5).

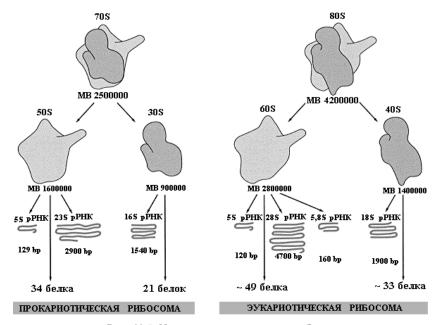


Рис. 10.5. Молекулярное строение рибосом

Рибосомы эукариот. Рибосомные субъединицы 40S и 60 S образуются в ядрышке. Субъединица 40S содержит молекулу рРНК 18S и около 33 белков. Субъединица 60S, в свою очередь, содержит рРНК 5S, 5,8S и 28S и около 49 белков.

<u>Рибосомы прокариот</u>. Синтез рРНК и образование субъединиц рибосомы происходит непосредственно в цито-

плазме. Субъединица 30S содержит рРНК 16S и 21 белок. Субъединица 50S состоит из рРНК 5S, 23S и 34 белка.

Рибосомы содержат несколько каталитических центров:

сайт А – аминоацил – отвечает за присоединение комплекса аминоацил-тРНК;

сайт Р – пептидил – отвечает за присоединение пептидил-тРНК;

сайт Е – отвечает за освобождение тРНК.

Образование комплекса рибосомы- молекулы тРНК - молекулы мРНК осуществляется при участии рРНК. Молекула рРНК малой субъединицы участвует в узнавании и присоединении к мРНК. Молекулы рРНК большой субъединицы ответственны за связывание двух субъединиц рибосом, взаимодействие тРНК с большой субъединицей и с молекулой мРНК. Реакции, протекающие на рибосомах, катализируются рибосомными белками.

Белковые факторы трансляции. Каждый этап трансляции контролируется комплексом специфических белковых факторов: IF-факторы инициации, EF-факторы элонгации и RF-факторы терминации (табл.10.1).

Механизм и этапы трансляции

Синтез белков заключается в последовательном расположении аминокислот в порядке, предписанном генетической информацией мРНК, которая является продуктом транскрипции с матрицы ДНК. Дешифровка информации происходит в направлении 5'—3' молекулы мРНК, т.е. в том же порядке, как была синтезирована мРНК в процессе транскрипции.

Процесс биосинтеза белков протекает в три этапа: инициация, элонгация и терминация. Каждый этап контролируется специфическими белковыми факторами, различными для эукариот и прокариот.

Инициация включает реакции, предшествующие формированию пептидной связи между первыми двумя аминокислотами белковой цепи. Для этого необходимо соединение рибосомы с мРНК и образование комплекса инициации, который включает первую аминоацил—тРНК. Этот этап протекает относительно медленно и определяет скорость белкового синтеза (рис.10.6).

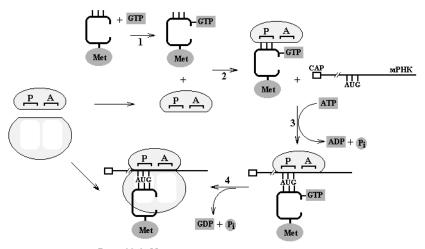
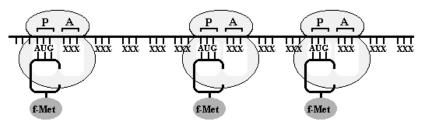


Рис. 10.6. Механизм инициации трансляции


Инициация протекает в несколько этапов:

- (1) Образование комплекса метионил-тРНК $_{met}$ (у прокариот формилметионил-тРНК $_{fmet}$);
- (2) Активация комплекса метионил-тРНК_{met} путем присоединения молекулы GTP;
- (3) Образование комплекса [метионил-тРНК_{met}]-[GTР]- [малая рибосомальная субъединица]. Метионил-тРНК располагается в сайте Р (свойственно только для иници-ирующей тРНК);
- (4) Присоединение комплекса к мРНК с узнаванием кодона инициации и затратой энергии одной молекулы АТР;

(5) Присоединение большой субъединицы рибосомы и распад GTP на GDP и P.

<u>У эукариот</u> вначале узнается КЭП, затем малая субъединица рибосомы перемещается и достигает первый кодон AUG. Первой аминокислотой полипептида является метионин (рис.10.7).

<u>У прокариот</u> узнается каждый кодон AUG, который служит сигналом для инициации трансляции. Первой аминокислотой полипептида является формилметионин.

Инициация трансляции у прокариот

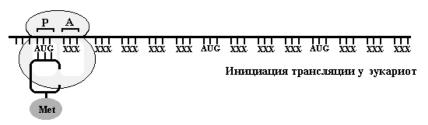


Рис. 10.7. Особенности инициации трансляции у прокариот и эукариот

Элонгация включает все реакции, начиная с образования первой пептидной связи, и заканчивается добавлением последней аминокислоты. Аминокислоты присоединяются по одной в соответствии с последовательностью кодонов в молекуле мРНК. Элонгация представляет собой самый быстрый этап трансляции (рис.10.8).

Элонгация характеризуется цикличностью следующих событий:

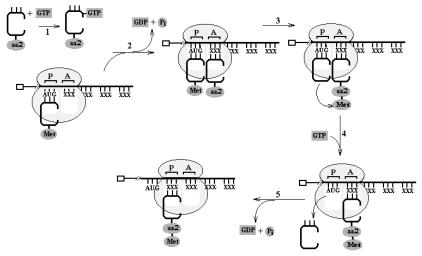


Рис. 10.8. Механизм элонгации полипептидной цепи

- (1) образование комплекса аминоацил-тРНК;
- (2) активация комплексов аминоацил-тРНК путем добавления к каждому из них по одной молекуле GTP;
- (3) транспортировка комплекса [аминоацил-тРНК]-[GTP] в сайт А рибосомы и освобождение GDP и P;
- (4) перенос инициирующей аминокислоты из сайта P в сайт A и образование пептидной связи между аминокислотами; процесс катализируется ферментом пептидилтрансферазой. На следующих этапах элонгации из сайта P в сайт A переносится вся полипептидная цепь;
- (5) освобождение молекулы тРНК из сайта Р. Присоединение одной молекулы GTP к рибосоме;
- (6) транслокация рибосомы на один триплет. Движение рибосомы осуществляется в направлении $5' \rightarrow 3'$ молекулы мРНК.
 - раскодированный триплет выходит за пределы участка P;

- в сайт P перемещается тРНК с синтезированным полипептидом (пептидил-тРНК);
- в участке A располагается следующий кодон, а в сайте A следующая аминоацил-тРНК.

Процесс протекает до момента , когда в сайт A попадает один из трех СТОП-кодонов.

Терминация включает события, необходимые для освобождения полипептидной цепи и диссоциации рибосом от молекулы мРНК. Когда в сайте A располагается один из трех СТОП-кодонов (UAG, UGA, UAA), к рибосоме присоединяется фактор освобождения RF, который обуславливает диссоциацию комплекса трансляции.

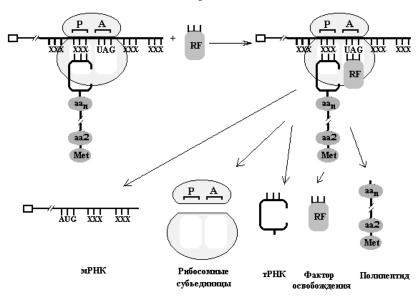


Рис. 10.9. Терминация трансляции и освобождение компонентов аппарата трансляции

Субъединицы рибосом, тРНК, мРНК, RF, белковые факторы трансляции могут быть использованы многократно (рис.10.9). Вновь синтезированная полипептидная цепь

обычно подвергается посттрансляционным модификациям: удаление метионина в начале цепи, фосфорилирование, гликозилирование, специфический гидролиз и др.

Регуляция трансляции

Биосинтез белков может быть активирован / инактивирован различными факторами белковой или небелковой природы, которые взаимодействуют с компонентами аппарата трансляции. В таблице 10.1 представлены основные факторы трансляции у прокариот и эукариот, механизм их действия на различных этапах инициации, элонгации и терминации биосинтеза белков.

У прокариот хорошо изучен механизм действия других факторов, влияющих на трансляцию. Примером могут служить некоторые антибиотики, которые блокируют синтез белков у бактерий:

- **Казагамицин** блокирует инициацию трансляции путем присоединения к 3'-концу молекулы 16S, ответственной за взаимодействие с матричной РНК.
- **Пуромицин** блокирует синтез белка путем присоединения к аминоацильному сайту тРНК.
- **Тетрациклин** блокирует присоединение аминоацил-тРНК к сайту А рибосомы.
- **Стрептомицин** препятствует переходу инициации трансляции в элонгацию.
- Хлорамфеникол блокирует действие пептидил-трансферазы.
- Эритромицин блокирует транслокацию рибосомы.

Некоторые модификации (мутации) в структуре мРНК могут нарушить процесс трансляции. Мутации могут быть вызваны модификацией структуры ДНК или возникнуть во время синтеза мРНК. Модификация лидирующей последовательности может препятствовать узнаванию и присоединению рибосом к мРНК. Потеря или добавление одного или нескольких нуклеотидов вызывает совиг рамки считывания и модификацию последовательностей аминокислот во всей цепи, начиная от точки модификации.

Табл.10.1. Факторы трансляции и механизм их действия

мРНК. еIF-4A Распознает КЭП и обеспечивает денатурацию палиндромов лидирующей последовательности мРНК. еIF-4B Обеспечивает стабильность молекулы мРНК и предупреждает петлеобразование. еIF-5 Является GTP-азой и обеспечивает присоединение субъединицы 60S к комплексу инициации. еIF-6 Предупреждает преждевременное связывание субъединиц 40S и 60S. Прокариоты EF-Tu Способствует проникновению аминоацил-тРНК в сайт А. EF-Ts Обеспечивает гидролиз GTP; регенерирует EF-Tu. EF-G Обеспечивает транслокацию рибосом. Зукариоты еEF-1α Обеспечивает присоединение аминоацил-тРНК к рибосомам; является гомологом EF-Tu. еEF- 1βγ			Табл.10.1. Факторы трансляции и механизм их действия			
Плекс инициации до взаимодействия его с другими белковыми факторами. IF-2 Соединяется с инициаторной тРНК и контролирует ее включение в рибосому. IF-3 Контролирует точную связь субъединицы 30S и мРНК. ———————————————————————————————————						
IF-2 Соединяется с инициаторной тРНК и контролирует ее включение в рибосому. IF-3 Контролирует точную связь субъединицы 30S и мРНК. Эукариоты eIF-2 Активирует комплекс Мет-тРНК меt eIF-3 Обеспечивает присоединение субъединицы 40S к КЭПу мРНК. eIF-4A Распознает КЭП и обеспечивает денатурацию палиндромов лидирующей последовательности мРНК. eIF-4B Обеспечивает стабильность молекулы мРНК и предупреждает петлеобразование. eIF-5 Является GTP-азой и обеспечивает присоединение субъединицы 60S к комплексу инициации. eIF-6 Предупреждает преждевременное связывание субъединиц 40S и 60S. Прокариоты EF-Tu Способствует проникновению аминоацил-тРНК в сайт А. EF-G Обеспечивает гидролиз GTP; регенерирует EF-Tu. EF-G Обеспечивает присоединение аминоацил-тРНК к рибосомам; является гомологом EF-Tu. Обеспечивает присоединение аминоацил-тРНК к рибосомам; является гомологом EF-Tu. Обеспечивает транслокацию рибосом; является гомологом EF-Ts. Обеспечивает транслокацию рибосом Обеспечивает тр		IF-1	Связывается с субъединицей 30S и стабилизирует ком			
IF-2 Соединяется с инициаторной тРНК и контролирует ее включение в рибосому. IF-3 Контролирует точную связь субъединицы 30S и мРНК. Эукариоты eIF-2 Активирует комплекс Мет-тРНК _{теt} eIF-3 Обеспечивает присоединение субъединицы 40S к КЭПу мРНК. eIF-4A Распознает КЭП и обеспечивает денатурацию палиндромов лидирующей последовательности мРНК. eIF-4B Обеспечивает стабильность молекулы мРНК и предупреждает петлеобразование. eIF-5 Является GTP-азой и обеспечивает присоединение субъединицы 60S к комплексу инициации. eIF-6 Предупреждает преждевременное связывание субъединиц 40S и 60S. Прокариоты EF-Tu Способствует проникновению аминоацил-тРНК в сайт А. EF-Ts Обеспечивает гидролиз GTP; регенерирует EF-Tu. EF-G Обеспечивает транслокацию рибосом. Эукариоты eEF-1a Обеспечивает присоединение аминоацил-тРНК к рибосомам; является гомологом EF-Tu. Обеспечивает гидролиз GTP, является гомологом EF-Ts. 1βγ eEF-2 Обеспечивает транслокацию рибосом; является гомологом EF-Ts. Обеспечивает транслокацию рибосом; является гомологом EF-Ts. Обеспечивает транслокацию рибосом; является гомологом EF-G. Обеспечивает транслокацию рибосом; является гомологом EF-Ts. Обеспе						
ВКЛЮЧЕНИЕ В РИБОСОМУ. IF-3 КОНТРОЛИРУЕТ ТОЧНУЮ СВЯЗЬ СУБЪЕДИНИЦЫ ЗОЅ И МРНК. ЭУКАРИОТЫ eIF-2 АКТИВИРУЕТ КОМПЛЕКС МЕТ-ТРНК _{тет} Обеспечивает присоединение субъединицы 40Ѕ к КЭПУ мРНК. eIF-4A Распознает КЭП и обеспечивает денатурацию палиндромов лидирующей последовательности мРНК. eIF-4B Обеспечивает стабильность молекулы мРНК и предупреждает петлеобразование. ЯВЛЯЕТСЯ GTP-азой и обеспечивает присоединение субъединицы 60Ѕ к комплексу инициации. eIF-6 Предупреждает преждевременное связывание субъединиц 40Ѕ и 60Ѕ. Прокариоты EF-Tu Способствует проникновению аминоацил-тРНК в сайт А. EF-Ts Обеспечивает гидролиз GTP; регенерирует EF-Tu. ЕF-G Обеспечивает трисоединение аминоацил-тРНК к рибосомам; является гомологом EF-Tu. eEF- Обеспечивает трисоединение аминоацил-тРНК к рибосомам; является гомологом EF-Tu. Обеспечивает транслокацию рибосом; является гомологом EF-Ts. Обеспечивает транслокацию рибосом						
IF-3 Контролирует точную связь субъединицы 30S и мРНК.		IF-2	Соединяется с инициаторной тРНК и контролирует е			
eIF-2 Активирует комплекс Мет-тРНК _{те} eIF-3 Обеспечивает присоединение субъединицы 40S к КЭПу мРНК. eIF-4A Распознает КЭП и обеспечивает денатурацию палиндромов лидирующей последовательности мРНК. eIF-4B Обеспечивает стабильность молекулы мРНК и предупреждает петлеобразование. eIF-5 Является GTP-азой и обеспечивает присоединение субъединицы 60S к комплексу инициации. eIF-6 Предупреждает преждевременное связывание субъединиц 40S и 60S. IIPокариоты EF-Tu EF-Ts Обеспечивает гидролиз GTP; регенерирует EF-Tu. EF-G Обеспечивает транслокацию рибосом. Эукариоты Обеспечивает присоединение аминоацил-тРНК к рибосомам; является гомологом EF-Tu. eEF-1α Обеспечивает присоединение аминоацил-тРНК к рибосомам; является гомологом EF-Tu. eEF- Обеспечивает транслокацию рибосом; является гомологом EF-Ts. 1βγ Обеспечивает транслокацию рибосом; является гомологом EF-Ts.		IF-3	Контролирует точную связь субъединицы 30S и мРНК.			
мов лидирующей последовательности мРНК. еIF-4B Обеспечивает стабильность молекулы мРНК и предупреждает петлеобразование. еIF-5 Является GTP-азой и обеспечивает присоединение субъединицы 60S к комплексу инициации. еIF-6 Предупреждает преждевременное связывание субъединиц 40S и 60S. Прокариоты EF-Tu Способствует проникновению аминоацил-тРНК в сайт А. EF-Ts Обеспечивает гидролиз GTP; регенерирует EF-Tu. EF-G Обеспечивает транслокацию рибосом. Зукариоты еEF-1α Обеспечивает присоединение аминоацил-тРНК к рибосомам; является гомологом EF-Tu. Обеспечивает гидролиз GTP, является гомологом EF-Ts. 1βγ еEF-2 Обеспечивает транслокацию рибосом; является гомологом EF-G.	ВИ					
мов лидирующей последовательности мРНК. еIF-4B Обеспечивает стабильность молекулы мРНК и предупреждает петлеобразование. еIF-5 Является GTP-азой и обеспечивает присоединение субъединицы 60S к комплексу инициации. еIF-6 Предупреждает преждевременное связывание субъединиц 40S и 60S. Прокариоты EF-Tu Способствует проникновению аминоацил-тРНК в сайт А. EF-Ts Обеспечивает гидролиз GTP; регенерирует EF-Tu. EF-G Обеспечивает транслокацию рибосом. Зукариоты еEF-1α Обеспечивает присоединение аминоацил-тРНК к рибосомам; является гомологом EF-Tu. Обеспечивает гидролиз GTP, является гомологом EF-Ts. 1βγ еEF-2 Обеспечивает транслокацию рибосом; является гомологом EF-G.	ац	17				
мов лидирующей последовательности мРНК. еIF-4B Обеспечивает стабильность молекулы мРНК и предупреждает петлеобразование. еIF-5 Является GTP-азой и обеспечивает присоединение субъединицы 60S к комплексу инициации. еIF-6 Предупреждает преждевременное связывание субъединиц 40S и 60S. Прокариоты EF-Tu Способствует проникновению аминоацил-тРНК в сайт А. EF-Ts Обеспечивает гидролиз GTP; регенерирует EF-Tu. EF-G Обеспечивает транслокацию рибосом. Зукариоты еEF-1α Обеспечивает присоединение аминоацил-тРНК к рибосомам; является гомологом EF-Tu. Обеспечивает гидролиз GTP, является гомологом EF-Ts. 1βγ еEF-2 Обеспечивает транслокацию рибосом; является гомологом EF-G.	ници					
eIF-4B Обеспечивает стабильность молекулы мРНК и предупреждает петлеобразование. eIF-5 Является GTP-азой и обеспечивает присоединение субъединицы 60S к комплексу инициации. eIF-6 Предупреждает преждевременное связывание субъединиц 40S и 60S. Прокариоты EF-Tu Способствует проникновению аминоацил-тРНК в сайт А. EF-Ts Обеспечивает гидролиз GTP; регенерирует EF-Tu. EF-G Обеспечивает транслокацию рибосом. Эукариоты еEF-1α обеспечивает присоединение аминоацил-тРНК к рибосомам; является гомологом EF-Tu. eEF-1βγ Обеспечивает гидролиз GTP, является гомологом EF-Ts. 1βγ Обеспечивает транслокацию рибосом; является гомологом EF-Ts.	И	eIF-4A	-4А Распознает КЭП и обеспечивает денатурацию палиндро			
Преждает петлеобразование. еIF-5 Является GTP-азой и обеспечивает присоединение субъединицы 60S к комплексу инициации. еIF-6 Предупреждает преждевременное связывание субъединиц 40S и 60S. Прокариоты EF-Tu Способствует проникновению аминоацил-тРНК в сайт А. EF-Ts Обеспечивает гидролиз GTP; регенерирует EF-Tu. EF-G Обеспечивает транслокацию рибосом. Зукариоты еEF-1α Обеспечивает присоединение аминоацил-тРНК к рибосомам; является гомологом EF-Tu. еEF- 1βγ еEF- Обеспечивает транслокацию рибосом; является гомологом EF-Ts. Обеспечивает транслокацию рибосом; является гомологом EF-Ts.			мов лидирующей последовательности мРНК.			
eIF-5 Является GTP-азой и обеспечивает присоединение субъединицы 60S к комплексу инициации. eIF-6 Предупреждает преждевременное связывание субъединиц 40S и 60S. Прокариоты EF-Tu Способствует проникновению аминоацил-тРНК в сайт А. EF-Ts Обеспечивает гидролиз GTP; регенерирует EF-Tu. EF-G Обеспечивает транслокацию рибосом. Эукариоты eEF-1α Обеспечивает присоединение аминоацил-тРНК к рибосомам; является гомологом EF-Tu. eEF-1βγ Обеспечивает гидролиз GTP, является гомологом EF-Ts. 1βγ Обеспечивает транслокацию рибосом; является гомологом EF-G.		eIF-4B	Обеспечивает стабильность молекулы мРНК и преду-			
единицы 60S к комплексу инициации. еIF-6 Предупреждает преждевременное связывание субъединиц 40S и 60S. Прокариоты ЕF-Ти Способствует проникновению аминоацил-тРНК в сайт А. ЕF-Тs Обеспечивает гидролиз GTP; регенерирует ЕF-Тu. ЕF-G Обеспечивает транслокацию рибосом. Зукариоты еEF-1α Обеспечивает присоединение аминоацил-тРНК к рибосомам; является гомологом ЕF-Тu. еEF- 1βγ еEF- Обеспечивает гидролиз GTP, является гомологом ЕF-Тs. 1βγ еEF-2 Обеспечивает транслокацию рибосом; является гомологом ЕF-G.						
eIF-6 Предупреждает преждевременное связывание субъединиц 40S и 60S. Прокариоты EF-Tu Способствует проникновению аминоацил-тРНК в сайт А. EF-Ts Обеспечивает гидролиз GTP; регенерирует EF-Tu. EF-G Обеспечивает транслокацию рибосом. Эукариоты eEF-1α Обеспечивает присоединение аминоацил-тРНК к рибосомам; является гомологом EF-Tu. eEF-1βγ Обеспечивает гидролиз GTP, является гомологом EF-Ts. 1βγ Обеспечивает транслокацию рибосом; является гомологом EF-G.		1 ''				
Прокариоты ЕF-Tu Способствует проникновению аминоацил-тРНК в сайт А. ЕF-Ts Обеспечивает гидролиз GTP; регенерирует EF-Tu. EF-G Обеспечивает транслокацию рибосом. Зукариоты еEF-1α Обеспечивает присоединение аминоацил-тРНК к рибосомам; является гомологом EF-Tu. Обеспечивает гидролиз GTP, является гомологом EF-Ts. 1βγ еEF- 1βγ Обеспечивает транслокацию рибосом; является гомологом EF-Ts.						
Прокариоты EF-Tu Способствует проникновению аминоацил-тРНК в сайт А. EF-Ts Обеспечивает гидролиз GTP; регенерирует EF-Tu. EF-G Обеспечивает транслокацию рибосом. Зукариоты еEF-1α Обеспечивает присоединение аминоацил-тРНК к рибосомам; является гомологом EF-Tu. еEF- 1βγ еEF- 1βγ еEF-2 Обеспечивает транслокацию рибосом; является гомологом EF-Ts.		eIF-6				
EF-Tu Способствует проникновению аминоацил-тРНК в сайт А. EF-Ts Обеспечивает гидролиз GTP; регенерирует EF-Tu. ЕF-G Обеспечивает транслокацию рибосом. Эукариоты еEF-1α Обеспечивает присоединение аминоацил-тРНК к рибосомам; является гомологом EF-Tu. еEF- Обеспечивает гидролиз GTP, является гомологом EF-Ts. 1βγ еEF-2 Обеспечивает транслокацию рибосом; является гомологом EF-G.						
EF-Ts Обеспечивает гидролиз GTP; регенерирует EF-Tu. EF-G Обеспечивает транслокацию рибосом. Эукариоты eEF-1α Обеспечивает присоединение аминоацил-тРНК к рибосомам; является гомологом EF-Tu. eEF-1 Обеспечивает гидролиз GTP, является гомологом EF-Ts. 1βγ eEF-2 Обеспечивает транслокацию рибосом; является гомологом EF-G.						
			Обеспечивает гидролиз GTP; регенерирует EF-Tu.			
	БІ	EF-G	Обеспечивает транслокацию рибосом.			
	T I	Эукариоты				
	HL	eEF-1α	Обеспечивает присоединение аминоацил-тРНК к рибо-			
	Эло					
eEF-2 Обеспечивает транслокацию рибосом; является гомологом EF-G.			Обеспечивает гидролиз GTP, является гомологом EF-Ts.			
гом EF-G.						
		eEF-2	Обеспечивает транслокацию рибосом; является гомоло-			
Прокариоты			гом EF-G.			
E RF-1 Узнает стоп-кодоны UAA и UAG.	Терминация		Узнает стоп-кодоны UAA и UAG.			
RF-2 Узнает стоп-кодоны UGA и UAA.						
RF-3 Обеспечивает специфичность RF-1 и RF-2.	INE	RF-3	Обеспечивает специфичность RF-1 и RF-2.			
Эукариоты	, de	Эукариоты				
	Ţ	???	Механизм схожий с таковым у прокариот; факторы тер-			
минации пока мало изучены.			минации пока мало изучены.			

Замещение нуклеотидов может вызвать появление **нонсенс-** или **миссенс-кодонов**. Миссенс-мутации вызывают замещение одной аминокислоты на другую. В случае образовании стоп-кодонов (нонсенс-мутации), синтезируются более короткие полипептидные цепи. Замещение стоп-кодона на смысловой кодон приводит к удлинению полипептидной цепи.

Число полипептидных цепей, синтезированных с одной и той же матрицы мРНК, зависит от продолжительности жизни мРНК. У прокариот вновь синтезированная мРНК сразу вступает в процесс трансляции, и продолжительность ее жизни равна 2-5 минутам. У эукариот существует несколько механизмов, обеспечивающих стабильность мРНК, и ее продолжительность жизни составляет от 20 минут до 48 часов. Среди этих механизмов можно выделить: полиаденилирование РНК, ассоциацию с белками образование комплекса рибонуклеопротеидов, предупреждает преждевременное разрушение молекулы мРНК. Согласно последним данным существуют антисмысловые молекулы РНК, которые присоединяются комплементарно к молекулам мРНК, блокируя их деградацию и предупреждая трансляцию соответствующих мРНК.

Особенности трансляции в митохондриях

Митохондрии обладают собственным аппаратом трансляции, который включает собственные рибосомы (55S - 70S), собственные тРНК, и в качестве матрицы используется мРНК, синтезированные с митохондриальной ДНК. Процесс трансляции в общих чертах схож с таковым у прокариот, за исключением некоторых особенностей. мРНК имеет полицистронную структуру и не подвергается кэпированию и полиаденилированию. В митохондриях существует только 22 типа тРНК, в связи с тем, что третий нук-

леотид антикодона действует по принципу: гуанин узнает любое пиримидиновое основание кодирующего триплета, а урацил – любое пуриновое основание. В митохондриях синтезируется только часть ферментов, участвующих в энергетическом обмене. Остальные митохондриальные белки, включая белки-регуляторы дыхания, трансляции, репликации, транскрипции, кодируются ядерным геномом, синтезируются в цитоплазме и переносятся в митохондрии. Таким образом, биосинтез митохондриальных белков регулируется в большой степени активностью генов ядра.

Контроль знаний:

- 1) Дайте определение: трансляция, генетический код, кодон, антикодон, рамка считывания, сайт A, сайт P, аминоацил-тРНК-синтетаза;
- 2) Каковы свойства генетического кода?
- 3) Каковы компоненты аппарата трансляции?
- 4) Чем отличается процесс трансляции у про- и эукариот?
- 5) Какие существуют этапы процесса биосинтеза белков?
- 6) Каковы механизмы регуляции синтеза белков у эукариот?